

No-Touch Disinfection: The New Frontier in Patient Safety

SPONSORED BY:

The Brewery, Chiswell Street, London

No Touch Disinfection -

The New Frontier in Patient Safety

Mark Stibich, PhD

Founder & Chief Scientific Officer - Xenex Disinfection Services, LLC Visiting Scientist - MD Anderson Cancer Center

About Xenex Disinfection Services

- Founded in 2009 by Mark Stibich and Julie Stachowiak, two PhDs from Johns Hopkins
- Number of employees: ~125
- Over 740 robots disinfecting 375+ hospitals
- Distribution in 18 countries
- Peer reviewed studies: 9 outcome studies, 5 environmental studies and 1 patient Satisfaction (HCAHPS) Study and multiple studies in preparation.
- Primary market: acute care, post-acute care; LTACs, SNFS and ASCs

DISCLOSURES

• Shareholder and Chief Scientific Officer for Xenex Disinfection Services, San Antonio, Texas

OUTLINE

- The Role of the Environment in Transmission of Pathogens
- Evidence for Automated Disinfection
- Outcomes Data
- MD Anderson Cancer Center Experience

WHERE ARE THE BUGS?

WHERE ARE THE BUGS?

Methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococcus: recognition and prevention in intensive care units.

Lin MY¹, Hayden MK.

SPREAD OF MDROS: ROLE OF THE HEALTHCARE ENVIRONMENT

- Issue: Patients shed important pathogens including VRE, *C. difficile*, MRSA, and *Acinetobacter baumannii* into their surrounding environment.
- Problem: These organisms remain viable on inanimate objects for days to months, and can be transferred from the environment to HCWs hands, and then to other patients.
- Inadequate infection control propagates MDROs.
- Another Problem: Contamination of hospital rooms and equipment can persist despite cleaning and disinfection.

KEY COMPONENTS OF AN INFECTION CONTROL PROGRAM

- Surveillance Programs
- Implementation & Monitoring of Best Practices
- Environmental Cleaning
- Antimicrobial Stewardship Program
- Transmission-based Precautions
- Patient-specific Factors
- Employees, Visitors and Caregivers

HOW LONG DO PATHOGENS SURVIVE?

Persistence of Microbes on Dry, Inanimate Surfaces

Pathogen	Duration of Persistence				
	(range)				
S. aureus, including MRSA	7 days – 7 months				
Enterococcus spp., including VRE	5 days – 4 months				
C. difficile spores	(5 months)				
Acinetobacter spp., including MDR	3 days – 5 months				
C. albicans	1 day – 4 months				
E. coli, including ESBL	1.5 hours – 5 months				
Klebsiella spp., including ESBL	2 hours -> 30 months				
Herpes simplex virus type 1 and 2	4.5 hours – 2 months				
Norovirus	8 hours – 7 days				

Modified from: Kramer A et al, BMC Infectious Diseases 2006, 6:130.

ROOM CONTAMINATION Post-Discharge Cleaning

PATHOGEN	% CONTAMINATED AFTER DISCHARGE CLEANING
MRSA ¹	74% of Surface Cultures
MRSA ²	46% of Rooms
MRSA ³	24% of Rooms
VRE ³	22% of Rooms
VRE ⁴	16% of Rooms

¹ French GL et al. J Hosp Infect 2004;57:31-7

² Blythe D et al. J Hosp Infect 1998;38:67-70

³ Goodman ER et al. ICHE 2008; 29:593-9

⁴ Byers KE. ICHE 1998;19:261-4.

EVIDENCE FOR AUTOMATED DISINFECTION

ENHANCED ROOM DISINFECTION SYSTEMS

- Automated systems do not rely on the operator to ensure all surfaces are disinfected and adequate contact time is achieved
- However, it must be applied in addition to standard cleaning
- Require areas to be temporarily vacated of patients and staff and incur additional expense
- **TYPES:** Hydrogen Peroxide Vapor, Mercury UV light, Pulsed Xenon UV Light

HYDROGEN PEROXIDE VAPOR (HPV)

- Reduces the risk of MDRO acquisition among high-risk patients who are admitted to a room previously occupied by a patient infected or colonized with an MDRO
- HPV in addition to a thorough infection prevention program could be implemented in high-risk environments to maximize patient safety

DRAWBACKS:

- The time for disinfection is 1.5-3 hours per room¹
- Did not reach statistically significant reduction in *C. diff*, MRSA or MDR-GNR¹

^{1.} Passaretti, et al. An Evaluation of Environmental Decontamination with Hydrogen Peroxide Vapor for Reducing the Risk of Patient Acquisition of Multidrug-Resistant Organisms. Clinical Infectious Diseases (CID), January 2013

UV LIGHT TECHNOLOGY Xenon vs. Mercury: Is All UV the Same?

	XENON	MERCURY			
Bulb Type	Pulsed Xenon (non-toxic)	Mercury (toxic)			
C. diff Kill Time	5 minutes	5 min. warm up + 45 min. + 15 min. cool down			
MRSA Kill Time	2 minutes	5 min. warm up + 25 min. + 15 min. cool down			
Intensity	High Intensity	Low Intensity			
Spectrum	Wide Spectrum*	Narrow Spectrum			

^{*}Xenon emits light across full germicidal spectrum.

IS ALL UV THE SAME?

Difference in Cell Damage

STUDY OBSERVATIONS

- Pulsed xenon caused irreparable cell membrane damage (lysing).
- Pulsed xenon UV disinfected faster than mercury UV.

Cheigh C-I, Park M-H, Chung M-S, Shin J-K, Park Y-S: Comparison of intense pulsed light- and ultraviolet (UVC)-induced cell damage in Listeria monocytogenes and Escherichia coli O157:H7. Food Control 2012, 25:654-659.

DUKE/UNC (BETR-D) STUDY

BACKGROUND:

In 2010 CDC Prevention Epicenters Program approved funding for a study structured by Duke and overseen by researchers at Duke, DICON and UNC Chapel Hill. The study began in April of 2012.

- 9 devices
- 9 hospitals
- · Randomized trial
- Isolation case focus

RESULTS:

- No impact to *C. diff*
- The decrease in MRSA infections was not statistically significant
- Statistical significance for cumulative MDROs was driven by reductions in VRE

Author's Commentary:

"Of four published studies on the clinical effectiveness of UV devices, one showed a 20% decrease in hospital-acquired multidrug-resistant organisms 23 and three showed 22–53% decreases in *C. difficile* infection.24–26 In light of these results, we were surprised by the lack of change in rates of *C. difficile* among exposed patients."

IS ALL UV THE SAME?

Material Compatibility is Different

PULSED XENON UV LIGHT (PX-UV)

- 5-minute Sporicidal Cycle
- Outcome data on VRE, C. diff, SSI, MDROs and MRSA infection rate reductions

PULSED XENON UV LAMP

Protected bulb, Patented technology, sporicidal dose in 5 min

LIVE MONITORING

Quick start, bulb intensity, reporting of data for instant monitoring/diagnostics

TOUCHSCREEN INTERFACE

User friendly, durable, Wi-Fi and cellular connection options

DATA PORTAL

Reports include frequency of use, which rooms were disinfected, adherence to disinfection times, etc.

SAFETY CONES

Durable design, safe for patients and staff, motion detection system, remote manual stop

PRACTICAL DESIGN

Dent resistant body, multilayer composite with shatter proof resin, "swerve-free" shock-absorbing wheels

ULTRAVIOLET DISINFECTION BEST PRACTICES

DISINFECTING WITH LIGHT

5 MINUTES IN EACH POSITION FOR PATIENT ROOMS

Studies explain why multiple positions in a room are necessary for optimal room disinfection of high-touch surfaces.¹

OUTCOMES DATA

Peer Reviewed Published Infection Rate Reduction Studies

AUTHOR / YEAR / JOURNAL	ORGANISM	SETTING	INFECTION REDUCTION	SPECIAL CONSIDERATIONS
Miller et al, 2015. American Journal of Infection Control	Clostridium difficile	LTAC	56.90%	Estimated 29 cases prevented in 15 months
Nagaraja et al, 2015. American Journal of Infection Control	Clostridium difficile	ICU	70%	Estimated 30 cases prevented in 12 months
Haas et al, 2014. American Journal of Infection Control	Multiple MDROs	Whole House	20%	19% Gram- reduction, Estimated 185 cases prevented in 22 months
Levin et al, 2013. American Journal of Infection Control	C. difficile	Whole House	53%	Only 56% compliance to protocol
Simmons et al, 2013. Journal of Infection Prevention	MRSA	Healthcare System	57%	50:1 ROI, Estimated 58 cases prevented in 18 months
Vianna et al, 2015. American Journal of Infection Control	Multiple MDROs, C. difficile	Whole House	29%, 41%	All ICU discharges, <i>C. difficile</i> isolation facility wide
Catalanotti et al, 2016. American Journal of Infection Control	Class I SSIs	Operating Room	46%	Estimated 23 infections prevented over 21 months
Fornwalt et al, 2015. American Journal of Infection Control	Hip/Knee SSIs (Class I)	Operating Room	100%	Xenex used nightly after terminal cleaning

A TRIAL OF PULSED XENON UV DISINFECTION TO REDUCE C. DIFFICILE INFECTION

(MAYO CLINIC, ROCHESTER, MN)

- 39% decrease in CDI incidence on Xenex Units (p=0.03)
- No significant reduction in CDI incidence on control units.

			/ENTION (6 MONTHS) September 2014	INTERVENTION (6 MONTHS) October 2014 - March 2015				
UNIT	CDI INCIDENCE	PATIENT CDI RATE PER 10,000 PATIENT DAYS		P-VALUE	CDI INCIDENCE PATIENT DAYS		CDI RATE PER 10,000 PATIENT DAYS	P-VALUE
PX-UV	15	8217	18.3	0.20	10	8958	11.2	0.03
CONTROL	11	5483	20.1	0.28	15	5219	28.7	0.03

TIMELINE FOR USE AT MD ANDERSON

- 2010 Research
- 2011 VRE Isolation Discharges (Three 5-minute Positions)
- 2012 All Isolation Discharges Institution-wide (VRE, C. diff, MDR GNB)
- 2013 All ICU Discharges
- 2013 Elimination of Bleach for *C. diff* Terminal Clean
- 2014 Continued Usage
- 2015 ORs at Terminal Clean (Two 10-minute Positions)

ENVIRONMENTAL STUDY:ELIMINATION OF VRE

CURRENT HOUSEKEEPING METHODS VS. PULSED XENON UV FOR VRE ISOLATION ROOMS

ROOM STATUS	OBSERVATIONS	HPC MEAN (CFU/INCH ²)	CONFIRMED VRE
PRE-CLEAN	75	213.7	17 (23%)
POST-HOUSEKEEPING	49	178.5	4 (8%)
POST-XENEX	75	7.8	0

P = 0.0001

HOSPITAL OPERATIONAL STATISTICS FOR 8 PULSED XENON TREATED ROOMS

ACTIVITY	MINUTES
PX-UV travel time to room	3:48
Preparing the room	:15
PX-UV emittance	12:00
Safety countdown	1:30
Repositioning the PX-UV device	:31
Room exit	:44
TOTAL PULSED XENON DISINFECTION TIME	18:48

Stibich M, et al. Infect Control Hosp Epidemiol. 2011; 32(3):286-288

ENVIRONMENTAL STUDY:

Reducing C. diff Contamination Without Bleach

Table 1. Impact of standard cleaning and PX-UV disinfection on Clostridium difficile counts in patient rooms

Room status	Samples taken	Samples positive for			Reduction (%)	P-value			
	(n)	C. difficile [n (%)]	Min.	Mean	Median	Max.	IQR		
Pre-bleach cleaning	74	26 (35)	0	2.39	0	81	11	70	0.13
Post-bleach cleaning	74	18 (24)	0	0.71	0	18	0		
Pre-PX-UV Cleaning	70	29 (41)	0	4.61	0	71	2	83	0.007
Post-PX-UV	70	16 (23)	0	0.80	0	13	0		

IQR, Interquartile range.

COMPLIANCE - EVS

Making Cancer History®

- **WHO:** All rooms that housed patients with VRE, *C. difficile*, & Norovirus. All ICU patients. Also clusters or other situations, as deemed necessary by Infection Control.
- **WHERE:** Inpatient areas only
- **WHEN:** UV cleaning is auto assigned to patient room at discharge or transfer (via OneConnect), based on organism present at time of discharge. Most inpatient areas require 3 cycles at 4 minutes each cycle. Compliance measured monthly via device log upload to "Xenex portal".
- **NOTE:** User ID must be entered for accountability.

Month	Total Patients Discharged Requiring PXUV	PXUV Performed When Required	% Compliant With Performing PXUV When Required	PXUV Performed Accurately (# of events/cycles)	% Compliant With PXUV Performed Correctly
AUG - 16	122	96	79%	65	68%
SEP - 16	77	69	90%	51	74%
OCT - 16	110	78	71%	59	76%
NOV - 16	98	87	89%	80	92%

INCIDENCE OF ALL NOSOCOMIAL MDRO INFECTIONS FY11 to FY16

	FY11 NI	MDR NI/1000 pt days	FY12 NI	MDR NI/1000 pt days	FY13 NI	MDR NI/1000 pt days	FY14 NI	MDR NI/1000 pt days	FY15 NI	MDR NI/1000 pt days	FY16 NI	MDR NI/1000 pt days
VRE	38	0.211	32	0.167	32	0.158	42	0.207	29	0.143	17	0.086
MRSA	58	0.322	48	0.25	34	0.168	26	0.128	40	0.198	35	0.177
MDR-Ps. aerug	29	0.161	19	0.099	18	0.089	18	0.088	6	0.029	12	0.061
ESBL-GNR	42	0.233	42	0.219	39	0.193	40	0.197	45	0.222	44	0.223
nonESBL GNR/CRE	19/11	0.105	14/9	0.073	16/7	0.079	19/5	0.094	16/8	0.079	12/3	0.060
Total MDR Nosocomial Infections	186	1.031	155	0.808	139	0.686	145	0.715	136	0.672	120	0.608

INCIDENCE OF ALL NOSOCOMIAL MDRO INFECTIONS FY11 to FY16

	FY11 NI	MDR NI/1000 pt days	FY12 NI	MDR NI/1000 pt days	FY13 NI	MDR NI/1000 pt days	FY14 NI	MDR NI/1000 pt days	FY15 NI	MDR NI/1000 pt days	FY16 NI	MDR NI/1000 pt days
VRE	38	0.211	32	0.167	32	0.158	42	0.207	29	INR	YIE.	0.086
MRSA	58	0.322	48	0.25	34	0.168	26	DECR	EAS		35	0.177
MDR-Ps. aerug	29	0.161	19	0.099	0.6)	08) =	41%		6	0.029	12	0.061
ESBL-GNR	42	0.233	OT	FY10		0.193	40	0.197	45	0.222	44	0.223
nonESBI GNR/CRE	FY1	(1.03	¥)	0.073	16/7	0.079	19/5	0.094	16/8	0.029 0.222 0.079	12/3	0.060
Total MDR Nosocomial Infections	186	1.031	155	0.808	139	0.686	145	0.715	136	0.672	120	0.608

CONCLUSIONS

- Manual cleaning is not adequate.
- The answer is not a single approach.
- We must blend technical knowledge with socio-adaptive skills.
- We must create a vision where prevention of harm, quality and safety is everyone's responsibility.

THANK YOU!

